A pair of novel statistics to improve constraints on primordial non-Gaussianity and cosmological parameters

Dr. Yun Wang

Email: yunw@jlu.edu.cn Web: wangyun1995.github.io

- What is primordial non-Gaussianity (PNG)?
- Why is PNG important?
- The challenge of constraining PNG
- Our novel statistics
- Parameter forecasts

Cosmic inflation: the early Universe underwent a phase of accelerated expansion in which quantum fluctuations were stretched at cosmological scales.

- There exists a broad diversity of inflationary models.
- All existing models predict tiny deviations from Gaussianity of primordial fluctuations, i.e. PNG.
- The primordial gravitational potential Φ :

 $\Phi = \Phi_{\rm G} + f_{\rm NL}^{\rm X}(\Phi_{\rm G}^2 - \langle \Phi_{\rm G}^2 \rangle)$ + higher-order terms

'X' refers to local, equilateral, or orthogonal

The bispectrum $B_{\Phi}(k_1, k_2, k_3)$ is the lowest order statistic sensitive to non-Gaussian features in the primordial potential field.

 $\langle \Phi(\mathbf{k}_1)\Phi(\mathbf{k}_2)\Phi(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^{D}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)B_{\Phi}(k_1, k_2, k_3)$

- Local shape: $k_1 \ll k_2 \approx k_3$
- Equilateral shape: $k_1 \approx k_2 \approx k_3$
- orthogonal shape: $2k_1 \approx 2k_2 \approx k_3$ (negative amplitude)

 $k_1 \approx k_2 \approx k_3$ (positive amplitude)

- Discriminating between various inflationary models.
- Providing clues about the high energy physics of the early Universe.
- Bridging the early Universe and late Universe.
- Indicating new physics beyond the standard model of cosmology.

- The signal of PNG is faint.
- The most stringent constraints come from measurements of the cosmic microwave background (CMB) anisotropies by the Planck satellite:

$$
f_{\text{NL}}^{\text{local}} = -0.9 \pm 5.1
$$
, $f_{\text{NL}}^{\text{equil}} = -26 \pm 47$, $f_{\text{NL}}^{\text{ortho}} = -38 \pm 24$

Obstacles: 2D, diffusion damping at small scales

 The current and future large-scale structure (LSS) surveys hold promise for offering enhanced sensitivity to PNG

Advantages: they can map a huge 3D volume of the Universe

 \Box Challenge: the late-time non-Gaussianity

Advanced methods:

■ marked power spectrum, power spectra in cosmic web environments, one-point probility distribution, neural network, persistent homology, ...

The crucial features of the late-time matter distribution:

 \Box the PDF of density field is nearly log-normal (Hamilton 1985, Coles & Jones 1991, Neyrinck et al. 2009, Wang et al. 2011)

- The crucial features of the late-time matter distribution:
	- \Box the density field is manifested in a hierarchical web-like structure

(Sheth & van de Weygaert 2004, Sheth 2004, Shen et al. 2006)

(credit: William A. Watson2014)

- The crucial features of the late-time matter distribution:
	- \Box the local extrema of density field are particularly sensitive to the PNG (Dalal et al. 2008, Chan et al. 2019)

Logarithmic transform

 $\rho_{\ln}(\mathbf{x}) = \ln[\rho(\mathbf{x})/\bar{\rho}]$

Continuous wavelet transform (CWT)

$$
\tilde{\rho}_{\ln}(w, \mathbf{x}) = \int \rho_{\ln}(\mathbf{x}') \Psi(w, \mathbf{x} - \mathbf{x}') d^3 \mathbf{x}'
$$

- \blacksquare the rescaled wavelet: $\Psi(w, \mathbf{x}) = w^{3/2} \Psi(w \mathbf{x})$
- \Box $w \in \{w_0, w_0 + \Delta w, w_0 + 2\Delta w, \ldots, w_0 + i\Delta w, \ldots\}$
- the isotropic Gaussian-derived wavelet (GDW):

$$
\Psi(\mathbf{x}) = C_{\rm N}(6-|\mathbf{x}|^2)e^{-|\mathbf{x}|^2/4}
$$

(Wang & He 2021, Wang et al. 2022)

- Detecting peaks (valleys) of $\tilde{\rho}_{\ln}(w, x)$ by locating coordinates with values above (below) their neighbors.
- The scale-dependent peak height function (scale-PKHF) is the number density of CWT peaks with heights falling in the bin $[\nu_{\rm pk} - d\nu_{\rm pk}/2, \nu_{\rm pk} +$ $d\nu_{\rm pk}/2$:

$$
n_{\rm pk}(w,\nu_{\rm pk})=\frac{\rm d\mathcal{N}_{\rm pk}(w)}{\rm d\nu_{\rm pk}}
$$

 The scale-dependent valley depth function (scale-VLYDF) is the number density of CWT valleys with depths falling in the bin $[\nu_{\text{vlv}} - d\nu_{\text{vlv}}/d\nu_{\text{vlv}}]$ 2, $v_{\text{vly}} + d v_{\text{vly}}/2$:

$$
n_{\rm vly}(w,\nu_{\rm vly})=\frac{\rm d\mathcal{N}_{\rm vly}(w)}{\rm d\nu_{\rm vly}}
$$

The correspondence: $w = c_w k$, with $c_w = 2/\sqrt{7}$ for the isotropic GDW

(Wang & He 2024)

Parameter forecasts · Fisher analysis

• **Parameter vector:**
$$
\theta = \{f_{\text{NL}}^{\text{local}}, f_{\text{NL}}^{\text{equil}}, f_{\text{NL}}^{\text{ortho}}, \Omega_m, \Omega_b, \sigma_8, n_s, h\}
$$

\n• **Statistics vector:** $S = \{n_{\text{vly}}(k_0, \nu_{\text{vly},0}), n_{\text{vly}}(k_0, \nu_{\text{vly},1}), n_{\text{vly}}(k_0, \nu_{\text{vly},2}), \dots, n_{\text{vly}}(k_1, \nu_{\text{vly},0}), n_{\text{vly}}(k_1, \nu_{\text{vly},1}), n_{\text{vly}}(k_1, \nu_{\text{vly},2}), \dots, n_{\text{vly}}(k_2, \nu_{\text{vly},0}), n_{\text{vly}}(k_2, \nu_{\text{vly},1}), n_{\text{vly}}(k_2, \nu_{\text{vly},2}), \dots, n_{\text{pk}}(k_0, \nu_{\text{pk},0}), n_{\text{pk}}(k_0, \nu_{\text{pk},1}), n_{\text{pk}}(k_0, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_1, \nu_{\text{pk},0}), n_{\text{pk}}(k_1, \nu_{\text{pk},0}), n_{\text{pk}}(k_1, \nu_{\text{pk},1}), n_{\text{pk}}(k_1, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_2, \nu_{\text{pk},0}), n_{\text{pk}}(k_2, \nu_{\text{pk},1}), n_{\text{pk}}(k_2, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_0), n_{\text{pk}}(k_1, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_0), n_{\text{pk}}(k_1, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_0, \nu_{\text{pk},1}), n_{\text{pk}}(k_2, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_0, \nu_{\text{pk},0}), n_{\text{pk}}(k_1, \nu_{\text{pk},1}), n_{\text{pk}}(k_2, \nu_{\text{pk},2}), \dots, n_{\text{pk}}(k_0, \nu_{\text{pk},2}), \dots, n$

• The $1-\sigma$ marginalized error on parameters:

$$
\sigma(\theta_i) \geq \sqrt{(\mathcal{F}^{-1})_{ii}}
$$

Fisher matrix:

$$
\mathcal{F}_{ij} = \left(\frac{\partial \boldsymbol{S}}{\partial \theta_i}\right) \mathcal{C}^{-1} \left(\frac{\partial \boldsymbol{S}}{\partial \theta_j}\right)^T
$$

Parameter forecasts · Simulations

- The Quijote simulation suite: (<https://quijote-simulations.readthedocs.io/en/latest/index.html>)
	- \Box Goal: quantify the information content on cosmological observables
	- 15000 fiducial simulations with a Planck cosmology

 $\{f_{\text{NL}}^{\text{local}}=0, f_{\text{NL}}^{\text{equil}}=0, f_{\text{NL}}^{\text{ortho}}=0, \Omega_m=0.3175, \Omega_b=0.049, \sigma_8=0.834, n_s=0.9624, h=0.6711\}$

- **□** 5 sets of 500 simulations varying one cosmological parameter
- **Q** 3 sets of 500 simulations with $f_{NL} = \pm 100$ (Quijote-PNG)
- \Box Each simulation box contains 512^3 dark matter particles and has a size of 1 Gpc/h

Parameter forecasts · Results

- The correlation matrix $r_{ij} = C_{ij}/\sqrt{C_{ii}C_{jj}}$
- The covariances of the scale-PKHF and scale-VLYDF are more diagonalized
- The scale-PKHF, scale-VLYDF and power spectrum are almost uncorrelated with each other

2024-9-27 College of physics, Jilin University 14

Parameter forecasts · Results

- The cumulative signal-to-noise ratio (SNR): $\text{SNR} = \sqrt{SC^{-1}S^{T}}$
- The scale-PKHF and scale-VLYDF do not show the flattening $\begin{array}{|c|c|c|c|c|}\n\hline\n\end{array}$ $\begin{array}{|c|c|c|c|c|}\n\hline\n\end{array}$ effect
- The combination of scale-PKHF 10^{3} $\left[-\frac{m_{\text{vly}}(k, \nu_{\text{vly}})}{-\frac{m_{\text{vly}}(k, \nu_{\text{vly}})}{2}}\right]$ and scale-VLYDF much higher SNR, up to 8.98 times than the
power spectrun at $k_{\text{max}} = 0.5$ power spectrun at $k_{\text{max}} = 0.5$ h/Mpc
- even 9.73 times when the power spectrum is included

Parameter forecasts · Results

Improvement factors of statistics over the power spectrum: σ_P/σ_S

- \Box f_{NI}^{local} : $n_{\text{vlv}} + n_{\text{pk}} + P > n_{\text{vly}} + n_{\text{pk}} > P + B > n_{\text{vly}} > B > n_{\text{pk}} > P$
- $\Box f_{\text{NIL}}^{\text{equil}}: n_{\text{vlv}} + n_{\text{pk}} + P > n_{\text{vly}} + n_{\text{pk}} > P + B > B > n_{\text{vly}} > n_{\text{pk}} > P$
- **0** $f_{\text{NI}}^{\text{ortho}}$: $n_{\text{vlv}} + n_{\text{pk}} + P > n_{\text{vly}} + n_{\text{pk}} > P + B > B > n_{\text{vly}} > n_{\text{pk}} > P$
- $\Box \Omega_{m}: \quad n_{\text{vlv}} + n_{\text{pk}} + P > P + B > B > n_{\text{vlv}} + n_{\text{pk}} > P > n_{\text{vlv}} > n_{\text{pk}}$
- $\Box \Omega_b: n_{\text{vlv}} + n_{\text{pk}} + P > P + B > B > n_{\text{vlv}} + n_{\text{pk}} > n_{\text{vlv}} > n_{\text{pk}} > P$
- \Box σ_8 : $n_{\text{vly}} + n_{\text{pk}} + P > P + B > B > n_{\text{vly}} + n_{\text{pk}} > n_{\text{vly}} = n_{\text{pk}} > P$
- $\Box n_{\rm s}$: $n_{\text{vlv}} + n_{\text{nk}} + P > n_{\text{vlv}} + n_{\text{nk}} > n_{\text{vlv}} > n_{\text{nk}} > P + B > B > P$
- $\Box h$: $n_{\text{vly}} + n_{\text{pk}} + P > P + B > B > n_{\text{vly}} + n_{\text{pk}} > n_{\text{vly}} > n_{\text{pk}} > P$

[19] Floss & Meerburg 2024

- We introduce two new summary statistics, the scale-PKHF and scale- VLYDF, for constraining PNG
- The scale-PKHF and scale-VLYDF are capable of capturing a wealth of primordial information about the Universe
- The scale-PKHF and scale-VLYDF are complementary to the traditional power spectrum
- Combining them two with the power spectrum improve constraints on all parameters compared to the bispectrum and power spectrum combination
- Our methodology is well-suited for future surveys
- **•** Further research is required
	- \Box theoretical modeling of the scale-PKHF and scale-VLYDF
	- \Box comparing them with other advanced statistics
	- \Box dealing with redshift space distortions
	- \Box investigating the effects of tracer bias

$\frac{1}{2}$ arXiv:2408.138 Capturing primordial non-Gaussian signatures in the late Universe by multi-scale extrema of the cosmic log-density field Yun Wang $(\pm \overrightarrow{\infty})^{1,*}$ and Ping He $(\overrightarrow{m} \mathbb{H})^{1,2,+}$ ¹College of Physics, Jilin University, Changchun 130012, China ² Center for High Energy Physics, Peking University, Beijing 100871, China (Dated: August 27, 2024) We construct two new summary statistics, the scale-dependent peak height function (scale-PKHF) and the scale-dependent valley depth function (scale-VLYDF), and forecast their constraining power on PNG amplitudes $\{f_{\text{NL}}^{\text{local}}, f_{\text{NL}}^{\text{equil}}, f_{\text{NL}}^{\text{ortho}}\}$ and standard cosmological parameters based on ten thousands of density fields drawn from QUIJOTE and QUIJOTE-PNG simulations at $z = 0$. With the Fisher analysis, we find that the scale-PKHF and scale-VLYDF are capable of capturing a wealth of primordial information about the Universe. Specifically, the constraint on the scalar spectral index n_s obtained from the scale-VLYDF (scale-PKHF) is 12.4 (8.6) times tighter than that from the power spectrum, and 3.9 (2.7) times tighter than that from the bispectrum. The combination of the two statistics yields constraints on $\{f_{\rm NL}^{\rm local}, f_{\rm NL}^{\rm equil}\}$ similar to those from the bispectrum and power spectrum combination, but provides a 1.4-fold improvement in the constraint on $f_{\text{NL}}^{\text{ortho}}$. After including

the power spectrum, its constraining power well exceeds that of the bispectrum and power spectrum combination by factors of 1.1–2.9 for all parameters.

2024-9-27 College of physics,Jilin University 18

Welcome any comments!

2024-9-27 College of physics, Jilin University 19